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Abstract. Development is the process by which genotypes are transformed into phenotypes. Consequently, devel-
opment determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns
of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits
may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations,
and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular
structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns
of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions
between modules result in additive effects on character expression and a second model in which these epigenetic
interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the de-
velopmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic
variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve
independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing
the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however,
can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that
an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of
character development.
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Adaptive evolution proceeds by selection acting on phe-
notypes, thereby altering the pattern of allelic variation in a
population. The relationship between allelic and phenotypic
variation is structured by ontogeny (Cheverud 1988; A. Wag-
ner 1996). Consequently, development plays a critical role
in determining how allelic variation is translated into quan-
titative genetic variation and covariation (Rice 2000) and,
thus, how allelic variation can contribute to the evolutionary
change in a trait. Although researchers stressed a central role
for development in evolution for several decades (e.g., de
Beer 1940; Goldschmidt 1940; Schmalhausen 1949; Wad-
dington 1957; Wright 1968; Gould 1977; Gilbert et al. 1996),
the connection between particular developmental mecha-
nisms and the process of microevolutionary change have been
examined explicitly only relatively recently (Atchley 1984;
Cheverud 1984; Riska 1986; Slatkin 1987; Wagner et al.
1997; Rice 1998, 2000).

Quantitative genetic models are the primary tools that have
been used to understand how selection on phenotypes trans-
lates into the genetic changes that alter phenotype distribu-
tions across generations (e.g., Lande 1979). Fundamental to
these quantitative genetic models is the partitioning of phe-

2 Present address: Department of Anatomy and Neurobiology,
Washington University School of Medicine, Box 8108, 660 South
Euclid Ave, St Louis, Missouri 63110; E-mail: jwolf@pcg.wustl.
edu

notypic variation into various components, such as additive,
dominance, and epistatic variance. This partitioning is
achieved by explicitly assuming a particular model for the
relationship between the observed phenotypic variation and
the allelic variation that contributed to it (e.g., Cheverud and
Routman 1995). There is an increasing appreciation that as-
sumptions about the genetic architecture underlying quanti-
tative traits can impact the usefulness of quantitative genetic
models for predicting evolutionary change (Goodnight 1988;
Turelli 1988; Willis and Orr 1993; Cheverud and Routman
1995). A number of analyses have also stressed the role that
development can have on the quantitative genetics of traits
(see Atchley 1984; Cheverud 1984; Riska 1986; Slatkin 1987;
Atchley and Hall 1991; Cowley and Atchley 1992; Rice 1998,
2000), but the impact of developmental architecture on quan-
titative genetic parameters and on their usefulness for making
evolutionary predictions is still not well established.

Here, we expand on previous advances of developmental
models of quantitative genetic variation by investigating how
epigenetic relationships among developmental modules
transform allelic variation into quantitative genetic variation.
We follow Rice’s (1998, 2000) development of the phenotype
landscape as a framework to illustrate how developmental
processes can alter the contribution of allelic variation to
additive and epistatic components of genetic variance and
covariance. The joint contribution of multiple developmental
modules to trait expression is visualized as a phenotype land-
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scape, where the topography of the landscape reflects the
relationship between underlying developmental variables and
the phenotype (for a complete description of phenotype land-
scapes, see Rice 1998, 2000). We use a linear model anal-
ogous to the path analytical models of Atchley et al. (Atchley
1987; Atchley and Hall 1991; Atchley et al. 1992, 1994;
Cowley and Atchley 1992) to examine the specific role of
developmental interactions among modules, which define the
surface of our phenotype landscape.

Because of the inherent complexity of ontogeny in a real
system, our model is necessarily simplistic and is not in-
tended as a general model of trait development. Rather, our
intention is to contribute to the further development of a
conceptual approach that can be used to understand the in-
fluence of developmental interactions on trait evolution. We
use explicit models of epigenetic interactions in trait devel-
opment to illustrate how changes in developmental interac-
tions between modules during development or changes in the
underlying allelic composition of a population affect standard
quantitative genetic parameters that are used to predict phe-
notypic evolution. Application of our model to understanding
evolution in an empirical context can be achieved in cases
where a particular system fits the basic assumptions of the
model or in cases where one can derive appropriate predictive
equations for a similar case using the general approach out-
lined here.

MODULARITY AND EPIGENETICS

Before exploring the effects of developmental interactions
on evolutionary change, we define the developmental units
of interest and the interactions that occur among them. In
our model we consider interactions between modules, the
developmental units that compose traits through ontogeny
(see Hall 1983; Rice 2000). Most traits are a mosaic of de-
velopmental modules, with each module contributing to the
trait mean, variance, and covariance with other traits.
Through ontogeny, epigenetic regulatory action coordinates
the development of these modules, thus further affecting the
means, variances, and covariances of the characters. Evolu-
tionary changes in a trait therefore can result from alterations
in module development, epigenetic regulatory action, or both
(A. Wagner 1996; G. P. Wagner 1996; Wagner and Altenberg
1996; Wagner et al. 1997). Modules are composed of tissue
fields or cell types that share physical proximity and a co-
ordinated response to epigenetic (extramodular) inductive
processes or cues. Modules exist in particular locations and
times through ontogeny and are dynamic—fusing, dividing,
differentiating, or changing in other ways as development
proceeds (Wessells 1977; Raff 1996). Modules are hierar-
chical in structure in that a single module is often a mosaic
of smaller modules; consequently, modules can be recognized
at several levels of organization such as cells, tissues, organs,
or other discrete morphological traits (Wessells 1977; Hall
1992; Raff 1996). For example, the bodies of holometabolous
(completely metamorphic) insects can be divided into a hi-
erarchy of developmental modules during ontogeny. Virtu-
ally all adult structures (e.g., limbs, wings, eyes) of holo-
metabolous insects arise from cells that are sequestered early
in embryogenesis. These isolated cells undergo division and

differentiation in self-contained pockets, the imaginal disks.
At metamorphosis, each disk responds independently to en-
docrine (epigenetic) cues, everting to reveal a fully formed
adult trait. Although disk development is regulated centrally
by circulating hormones, there are localized effects of one
disk on the ontogeny of neighboring disks. For example,
experimental ablation of a wing disk increases the size of
structures developing from other disks in the thoracic seg-
ment, but does not affect size of structures developing in the
other segments of the insect. Similarly, the negative genetic
correlation between horn and eye size in horned beetles re-
sults from interactions between imaginal disks that give rise
to these structures, which share close proximity within the
beetle head (Nijhout and Emlen 1998; Emlen and Nijhout
1999). These results suggest that each insect segment rep-
resents a developmental module, which in turn contains
smaller interacting modules that form the adult structures.
Within each disk, there are still smaller interacting modules,
which eventually comprise the differentiated cell types of
each adult structure. Most traits that are the focus of quan-
titative genetic studies are actually complex mosaics of de-
velopmental modules that interact through ontogeny to affect
the value of the composite, terminal phenotype. Quantitative
characters therefore can be considered to be mosaics com-
posed of multiple modules at multiple levels of organization.

We assume that the patterns of growth and differentiation
of a module are affected by intermodular, or epigenetic, in-
teractions. The resulting epigenetic effects can be defined
generally as the influence that one developing module has
on the expression of other modules. Epigenetic interactions
themselves can originate from the variety of modes by which
a module can influence the development of other modules.
Epigenetic effects can be direct inductive or regulatory in-
teractions mediated by signaling proteins or indirect effects
such as when one module modifies the local embryonic en-
vironment for neighboring modules. For example, epigenetic
effects may result from competition for resources among de-
veloping modules, local embryonic morphogen gradients that
affect patterns of gene expression, or physical stresses among
cartilaginous structures that initiate bone deposition. These
sorts of interactions can occur between physically close mod-
ules, which interact by direct physical contact, or they can
occur between physically distant modules, where the inter-
action may occur via an intermediary (e.g., the circulatory
system). Epigenetic interactions can also result from factors
that influence module ontogeny by affecting the patterns of
gene expression regulating the initiation, termination, and
rate of module differentiation, growth, and programmed death
(Wessells 1977; Hall 1983, 1992). Thus, although we will
discuss epigenetic effects as a single phenomenon, they en-
compass a broad range of specific interactions. Furthermore,
our model does not distinguish between epigenetic interac-
tions that are temporal versus those that are spatial in nature
(Hall 1992). Although we do not dwell on the distinction
between these types of interactions (spatial vs. temporal),
one can view our model alternatively as a model of spatial
interactions, where modules exist in a spatial dimension or
as a model of temporal interactions, where these modules are
arrayed in a time series. We comment further on this dis-
tinction when presenting each of the models below.
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FIG. 1. Diagram of effects on the phenotype. This diagram shows
the decomposition of the phenotype into modules (M values), which
are themselves influenced by intrinsic genetic effects (a values),
intrinsic environmental effects (e values), additive epigenetic ef-
fects (j values), and nonadditive epigenetic effects (d values). In
this example the additive epigenetic effects are reciprocal, but the
nonadditive epigenetic effects are shown as unidirectional to follow
the model presented herein.

A MODEL FOR TRAIT DEVELOPMENT

We now present a model of modular development based
on our assumptions about the role of epigenetic effects in
trait development. Using a quantitative genetic perspective,
we examine how the developmental relationships among
modules can affect the pattern of variation and covariation
among traits and therefore the potential for evolutionary
change.

Consider a single trait i, with phenotypic value zi that is
composed of n developmental modules (each denoted Mj,
where j denotes module identity) we can express the phe-
notypic value as:

n

z 5 M . (1)Oi j
j51

The hierarchical nature of developmental modules allows us
to decompose these modules (Mj) into their constituent mod-
ules (mq):

y

M 5 m , (2)Oj q
q51

where mq represents the developmental modules contributing
to the value of module Mj. This process can continue down
through the modular hierarchy (e.g., we could subdivide the
m modules into their modular constituents) until we reach a
lower limit, e.g., the modular constituents of biochemical or
genetic pathways.

We assume that the value of each module can be decom-
posed into intrinsic (i.e., within module) and epigenetic (i.e.,
among module; developmental) components (cf. Atchley and
Hall 1991; Cowley and Atchley 1992). We use the term in-
trinsic to refer to factors that directly influence the devel-
opment of a particular module and are thus inherent to that
module. We divide the intrinsic component into the additive
effects of genes directly contributing to the value of the mod-
ule (intrinsic genetic effects) and environmental effects (in-
trinsic environmental effects), which may include nonaddi-
tive intrinsic genetic effects. Intrinsic genetic effects result
from local gene action and arise from factors such as locally
expressed enzymes, cell structure proteins (including surface
proteins), and locally acting growth factors (Atchley and Hall
1991) that influence development of a given tissue field or
cell lineage. Intrinsic environmental effects result from non-
heritable factors that influence module development, such as
temperature or resource availability. Intrinsic effects contrast
with the epigenetic effects that arise when one or more mod-
ules influence the development of the focal module, Mj. Epi-
genetic effects can be additive, where each module contrib-
utes an additive influence on the development of another
module, or they can be nonadditive, where the effect of one
module on the development of other modules is dependent
on the module’s specific allelic composition (Fig. 1). The
additive effect of one module (Mj) on the development of
another module is determined by the epigenetic effect co-
efficient jjk (cf. Cowley and Atchley 1992). We can now
express the value of a module (Mj) that is influenced addi-
tively by the development of other modules (Mk) as

x

M 5 a 1 e 1 j M , (3)Oj j j jk k
k51

where a denotes the intrinsic additive genetic effect and e
the intrinsic environmental effect.

Equation (3) can be expanded to include nonadditive epi-
genetic effects, where djk is a measure of the nonadditive
interaction between module Mk and the intrinsic genetic com-
ponent aj,

x x

M 5 a 1 e 1 j M 1 d a M . (4)O Oj j j jk k jk j k
k51 k51

Assuming that module Mk has an intrinsic genetic component
contributing to its value, this nonadditive component (which
represents the interaction between aj and ak) will represent
a form of physiological or developmental additive-by-addi-
tive epistasis (Crow and Kimura 1970). Figure 1 shows path-
ways of effects on Mj corresponding to the components in
equation (4).

The epigenetic effects captured in the interaction coeffi-
cients (j and d) of equation (4) encompass a myriad of factors,
including direct (e.g., inductive or regulatory interactions
among modules mediated by signaling proteins) or indirect
effects (Newman 1994). The interactions can be spatial or
temporal, where the subscripts can designate different mod-
ules measured at a single point in time, the same module
measured at different points in time, or some combination of
both. As a result, this model could be used to analyze complex
multidimensional interaction, time-series feedback loops, or
cyclical interactions. Although we limit the analysis pre-
sented here to two simple examples to maintain clarity, we
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FIG. 2. Phenotype landscapes for two traits. (a) A phenotype landscape for a trait showing only additive, reciprocal, epigenetic interactions
between two underlying modules. This landscape corresponds to a phenotype defined as z1 5 M1 5 a1 1 e1 1 ½M2 (making the epigenetic
effect coefficient j12 5 ½), where the phenotypic value of M2 is defined as z2 5 M2 5 a2 1 e2 1 ½M1 (see details associated with eqs.
7 and 8 in the text). (b) A phenotype landscape for a trait showing only one-way nonadditive epigenetic effects of two underlying
modules. The landscape corresponds to a phenotype defined as z2 5 M2 5 a2 1 e2 1 ½a2M1 (where the nonadditive epigenetic effect
d21 has a value of ½). M1 is simply defined as the sum of intrinsic additive genetic and environmental effects z1 5 M1 5 a1 1 e1 (details
are given for eqs. 30 and 31 in the text).

suggest that our approach could provide a fruitful way to
analyze other developmental systems.

The relationship between the genotype (i.e., the intrinsic
genetic effects that result from allelic composition) and the
expression of the phenotype is reflected in the phenotype
landscape. In the simplest case, the phenotypic value of trait
j (zj) is equal to the sum of the values of two modules, Mj

and Mk, and the phenotype landscape of zj is a simple function
of the value of intrinsic genetic effects contributing to mod-
ules Mj and Mk. Epigenetic effects cause the landscape to
take on any of a diversity of shapes depending on the values
of j and d. Figure 2 shows two hypothetical landscapes drawn
as a function of the values of the intrinsic genetic components
of two developmental modules underlying the trait. The first
landscape (Fig. 2a) was created under the assumption of only
additive epigenetic effects (i.e., djk 5 0) and has the form of
a plane. The second landscape (Fig. 2b) incorporates non-
additive epigenetic effects (i.e., djk ± 0) and has the form of
a saddle (Rice 1998).

A Two-Trait Additive Model

We will first focus on additive epigenetic effects, where
the influence of one developing module on the expression of
another module is independent of the genetic or phenotypic
value of that other module. We consider additive and non-
additive effects separately, but the two models could be sim-
ply combined to examine a system where both kinds of effects
exist (as in eq. 4). The kinds of additive epigenetic effects
considered in this first model may arise in situations such as
where tissue growth is regulated by resource allocation. For

example, in both butterfly (Precis coenia) wings and beetle
(Onthophagus taurus) horns, the size of the structure pro-
duced appears to depend, in large part, on competition among
growing parts for resources (Nijhout and Emlen 1998). De-
velopmental regulation by gradients provides another ex-
ample of where interactions may be additive. For example,
the formation of wing coloration and eye-spots in butterflies
depends on the concentrations of factors (including Distil-
less) around the foci that eventually form color or spots
(Brakefield et al. 1996; Brakefield and French 1999).

We consider a two-trait additive model (where traits are
numbered 1 and 2), where each of trait is composed of a
single developmental module, M1 and M2, respectively (cf.
eq. 1). The phenotypic value (z) these traits can be expressed
as

z 5 M and (5)1 1

z 5 M . (6)2 2

Following our definition of the module from equation (3) and
assuming that the two modules reciprocally affect each other
during development, we can express the value of the two
modules as

M 5 a 1 e 1 j M and (7)1 1 1 12 2

M 5 a 1 e 1 j M . (8)2 2 2 21 1

Unidirectional developmental effects can be considered using
this general model by setting either of the epigenetic effect
coefficients (j12 or j21) equal to zero. The reciprocal inter-
actions shown in equations (7) and (8) can be thought of as



236 JASON B. WOLF ET AL.

FIG. 3. Phenotype landscapes for the two-trait additive model. (a) Phenotype landscapes for traits 1 and 2 where the epigenetic effect
coefficients have the values j12 5 0.15 and j21 5 0.15; (b) j12 5 0. 5 and j21 5 0.5; (c) j12 5 0.75 and j21 5 0.75; (d) j12 5 0.75 and
j21 5 20.75.

a model of spatial interactions because temporal interactions,
by definition, are unidirectional. However, this model could
be applied to temporal interactions by creating a unidirec-
tional model as mentioned above.

Using this definition of the modules and solving for a non-
circular definition of the phenotype, the phenotypic values
of traits 1 and 2 are

1
z 5 [a 1 e 1 j a 1 j e ] and (9)1 1 1 12 2 12 21 2 j j12 21

1
z 5 [a 1 e 1 j a 1 j e ]. (10)2 2 2 21 1 21 11 2 j j12 21

The phenotypic landscapes of z1 and z2, as defined by equa-
tions (9) and (10), respectively, are planes with slopes in the
two dimensions (a1 and a2). The basic shape of these land-
scapes can be seen for various parameter values in Figure 3.
The slope of the phenotype landscape for either trait can be
expressed as the gradient, ¹zi. For a plane, the gradient is a
vector pointing uphill on the surface in the steepest direction.
The gradient vectors of the two phenotype landscapes are
defined as:

11
¹z 5 and (11)1 [ ] [ ]1 2 j j j12 21 12

j1 21
¹z 5 . (12)2 [ ] [ ]1 2 j j 112 21

To understand how this developmental view of quantitative
genetic parameters corresponds with traditional quantitative
genetic parameters, we can express equation (9) and (10)
using the classic partitioning of the phenotype into direct
additive genetic effects (a) and random (i.e., environmental)
effects (e). Trait z1 can be expressed as

z 5 a 1 e ,1 1 1 (13)

where a1 is the additive genetic value and e1 is the environ-
mental component. These components of the phenotype are
defined in our model as

1
a 5 [a 1 j a ] and (14)1 1 12 21 2 j j12 21

1
e 5 [e 1 j e ]. (15)1 1 12 21 2 j j12 21

It follows that

z 5 a 1 e ,2 2 2 (16)

where

1
a 5 [a 1 j a ] and (17)2 1 21 11 2 j j12 21

1
e 5 [e 1 j e ]. (18)2 2 21 11 2 j j12 21

The phenotypic variances and covariances (Pii) of the two
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traits can be derived by taking the pairwise covariance
(C[z1,z2]) of the trait values given in equations (9) and (10).
Assuming no covariance between the genetic and environ-
mental effects (e.g., C[a1, e1] 5 0) the phenotypic variance
of trait z1 (P11) is

2
1

P 5 [V(a ) 1 V(e ) 1 2j C(a , a )11 1 1 12 1 2[ ]1 2 j j12 21

21 2j C(e , e ) 1 j V(a )12 1 2 12 2

21 j V(e )]. (19)12 2

Similarly the phenotypic variance of trait 2 is defined as
2

1
P 5 [V(a ) 1 V(e ) 1 2j C(a , a )22 2 2 21 1 2[ ]1 2 j j12 21

21 2j C(e , e ) 1 j V(a )21 1 2 21 1

21 j V(e )] (20)21 1

and the phenotypic covariance between the two traits is de-
fined as

2
1

P 5 [C(a , a ) 1 C(e , e )1 j V(a )12 1 2 1 2 21 1[ ]1 2 j j12 21

1 j V(a ) 1 j V(e ) 1 j V(e )12 2 21 1 12 2

1 j j C(a , a ) 1 j j C(e , e )].12 21 1 2 12 21 1 2 (21)

The additive genetic variances (Gii) and covariance (Gij)
can be extracted as the portion of the phenotypic variance
owing to intrinsic additive genetic effects. Alternatively, the
additive genetic covariances can be derived using equations
(14) and (17) by taking the pairwise covariance of the additive
genetic effects. Using either of these approaches, we find that
the additive genetic variance of the two traits are defined as

2
1 2G 5 [V(a ) 1 2j C(a , a ) 1 j V(a )] (22)11 1 12 1 2 12 2[ ]1 2 j j12 21

and
2

1 2G 5 [V(a ) 1 2j C(a , a ) 1 j V(a )], (23)22 2 21 1 2 21 1[ ]1 2 j j12 21

and the additive genetic covariance between the traits is
2

1
G 5 [C(a , a ) 1 j V(a ) 1 j V(a )12 1 2 21 1 12 2[ ]1 2 j j12 21

1 j j C(a , a )]. (24)12 21 1 2

The derivation of the environmental variances (Eii) and
covariance (Eij) is analogous to the derivation of the additive
genetic covariances. Taking the covariance of the environ-
mental terms given in equations (15) and (18), we define the
environmental variances as:

2
1 2E 5 [V(e ) 1 2j C(e , e ) 1 j V(e )](25)11 1 12 1 2 12 2[ ]1 2 j j12 21

and

2
1 2E 5 [V(e ) 1 2j C(e , e ) 1 j V(e )](26)22 2 21 1 2 21 1[ ]1 2 j j12 21

and the covariance as
2

1
E 5 [C(e , e ) 1 j V(e ) 1 j V(e )12 1 2 21 1 12 2[ ]1 2 j j12 21

1 j j C(e , e )]. (27)12 21 1 2

A Two-Trait Nonadditive Model

The occurrence of simple, additive epigenetic interactions
is probably the exception rather than the rule. More common
are nonadditive epigenetic interactions among modules (Wes-
sells 1977; Hall 1992; Rice 1998, 2000). Nonadditive inter-
actions can be reciprocal, as in feedback loops, but unlike
the purely additive model, we assume that interactions are
not simultaneous between interacting modules. This as-
sumption is necessary whenever interactions are nonadditive,
because covariances do not have finite dimensions when in-
teractions occur simultaneously and reciprocally. Thus, in our
model, interactions are ordered and unidirectional in nature.
This is equivalent either to each trait representing new mod-
ules or to each trait representing an ontogenetic step, where
M1 is the phenotypic value of a module at time 1, M2 is the
value at time 2, M3 is the value at time 3, and so on. As in
the additive case, interactions can be spatial or temporal.
Although the assumption of ordered interactions is necessary
for mathematical tractability, it gives few limitations on the
application of our model to known developmental systems,
whether regulative or mosaic development (see Discussion).
Even reciprocal interactions can be decomposed into multiple
steps where effects are unidirectional. Both instructive and
permissive interactions involve sequential interactions, even
when developmental feedback is involved.

For simplicity, we first present a model of nonadditive
interactions reflecting interactions between two modules at
the first step. To accommodate interactions that occur beyond
the first step, our model can be extended to multiple se-
quences of interactions. In the appendix, we extend sequences
to a third time step to show how an extended developmental
series will influence quantitative genetic parameters. Looped
feedback systems can be analyzed by assuming that the mod-
ule represented as M3 is the same module as M1, but is mea-
sured at the end of a feedback loop (whereas M1 is the value
at the start of the loop).

As above, we examine two traits, each made up of a single
module:

z 5 M and (28)1 1

z 5 M . (29)2 2

We assume that the traits represent sequential steps in on-
togeny, where z1 is the phenotypic value of a character at
step 1, z2 is the phenotypic value at step 2, and so on. We
define the value of the first module (contributing to trait z1)
as:

M 5 a 1 e .1 1 1 (30)

In equation (30), we have assumed that at the first time step
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in the series there are no epigenetic interactions. This is the
initiation of ontogeny, where we assume that only intrinsic
genetic and environmental factors influence the develop-
mental process, independent of any previous developmental
events. More information may be gained if the state of various
modules at previous time steps are known, but to examine
the effects of interactions through ontogeny we can arbitrarily
assign any point in ontogeny as the initial state and examine
interactions among modules forward from that point. The
value of this same trait at the next step in the developmental
series will be influenced by the value at time step 1 (M1):

M 5 a 1 e 1 d a M .2 2 2 21 2 1 (31)

The term d21a2M1 describes the simplest nonadditive epi-
genetic effect of one module, M1, on a second, M2. This term
describes an effect of M1 on M2 that depends not only on the
value of M1 (as in the additive model, see eq. 3) but also on
the genes expressed in M2. d21 is a coefficient that determines
the magnitude of the epigenetic effect and is analogous to
the coefficient j in the additive model. By incorporating the
definition of module 1 into the value of module 2, equation
(31) can be written as:

M 5 a 1 e 1 d a a 1 d a e .2 2 2 21 2 1 21 2 1 (32)

We can interpret the components contributing to the ex-
pression of M2 by examining the components in equation
(32). The term d21a2a1 describes an interaction between the
intrinsic genetic components in M1 and M2, which corre-
sponds to additive-by-additive epistasis because the two in-
trinsic components are, by definition, additive in their direct
effects on each module. The term d21a2e1 describes an in-
teraction between the genetic component in M2 and environ-
mental effects influencing M1, which corresponds to a ge-
notype-by-environment (G 3 E) interaction effect. The effect
that the intrinsic effect a2 has on the expression of M2 depends
on the environmental effect on M1. The phenotype landscape
for trait 2 is shown in Figure 2b. It is important to note that
the equations presented above that define the trait values (eqs.
28–32) do not represent a statistical model, but rather a de-
velopmental model of interacting modules (as in Rice 1998).

As with the additive model, we can use the developmental
model (eqs. 31, 32) to describe the phenotypic covariances
as a function of variation in the underlying components. For
mathematical tractability, we make three assumptions com-
mon in quantitative genetic models (Lynch and Walsh 1998):
(1) the underlying genetic and environmental components are
multivariate normally distributed; (2) the expected environ-
mental deviations are zero, E(di) 5 0; and (3) there is no
covariance between genetic and environmental effects,
C(ai,di) 5 0. To avoid redundancy, we present only the ge-
netic and environmental variances and covariances, noting
that the phenotypic variances and covariances are simply the
sum of the appropriate genetic and environmental compo-
nents (see examples in the additive model).

The additive genetic variances of the two traits are:

G 5 V(a ) and (33)11 1

2 2 2G 5 V(a ) 1 d [ā V(a ) 1 ā V(a ) 1 2ā ā C(a , a )]22 2 21 2 1 1 2 1 2 1 2

1 2d [ā C(a , a ) 1 ā V(a )].21 2 1 2 1 2 (34)

The additive genetic covariance is defined as:

G 5 C(a , a ) 1 d ā V(a ).12 1 2 21 2 1 (35)

This equation shows that the additive genetic covariance be-
tween the two traits depends on the covariance between the
intrinsic genetic effects in each module and the covariance
between the intrinsic genetic effect in M1 with the epigenetic
effect in M2, i.e., C(a1, d21 a2a1).

Because our developmental model is nonadditive, the po-
tential exists for interaction (i.e., epistatic) components of
genetic variance. However, because our developmental model
does not allow for interactions in the development of trait 1,
the additive-by-additive epistatic variance of z1 (I11) is by
definition zero. Similarly, the epistatic covariance between
traits 1 and 2 (I12) is also zero by definition. The epistatic
variance of trait 2 is defined as:

2 2I 5 d [V(a )V(a ) 1 C (a , a )]22 21 1 2 1 2

2 25 d (1 1 r )V(a )V(a ), (36)21 12 1 2

where r2 is the correlation between a1 and a2. From equation
(36) we can see that the contribution of allelic variance to
epistatic variance depends on the square of the epigenetic
effect coefficient, d21, and the square of the correlation be-
tween the genetic components, r12.

We define the environmental variances as:

E 5 V(e ) (37)11 1

2E 5 V(e ) 1 (d ā ) V(e ) 1 2d ā C(e , e ), (38)22 2 21 2 1 21 2 1 2

and

E 5 C(e , e ) 1 d ā V(e ). (39)12 1 2 21 2 1

Note that the environmental variance terms in equations (38)
and (39) resulting from the epigenetic effect depend on the
mean value of the genetic component in M2 (a2) because of
the developmental G 3 E interaction. This term shows the
potential for evolution of canalization of the phenotype in a
variable environment (Wagner et al. 1997; Rice 1998, 2000).

Because of the nonadditive developmental interaction term
in equation (31), there is the potential for G 3 E variance,
V(G 3 E)ii. As in the case of the epistatic variance, the G 3
E variance of trait 1 (V[G 3 E]11) is zero because there are
no developmental interactions affecting the expression of z1.
For this same reason, the G 3 E covariance between z1 and
z2 (V[G 3 E]12) is also zero. We define this component of
variance for the traits as:

2V(G 3 E) 5 d V(e )V(a ).22 21 1 2 (40)

From equation (40) we see that the G 3 E variance depends
the variance for environmental effects on M1 and variance
for genetic effects in M2. As with additive-by-additive genetic
variance components (eq. 36), the G 3 E variance component
depends on the square of the epigenetic coefficient, d21, and
is large only when the epigenetic effect is large.

DISCUSSION

Quantitative genetic theory provides a framework for un-
derstanding the dynamics of evolutionary change in a trait
without requiring knowledge of its underlying genetic and
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developmental architecture. However, the very assumptions
of quantitative genetics that allow inferences to be made
about the structure of genetic variation that underlies phe-
notypic variation (see Falconer and Mackay 1996) may ob-
scure interesting and potentially important aspects of biology
that will affect the evolution of populations. By adopting a
modular view of trait development, we have explicitly con-
sidered how interactions among modules influence the pattern
of phenotypic and genetic variation in characters. Most traits
are mosaics of developmental modules, with each module
contributing additively or nonadditively to a trait’s pheno-
typic value. The kinds of interactions that underlie module
ontogeny influence both the phenotypic and quantitative ge-
netic variation of traits, as well as the correlations among
them. This pattern of variation and covariation determines
the potential evolutionary responses of traits affected by se-
lection and therefore connects the developmental process to
quantitative genetic models of evolutionary change. Inclusion
of the developmental basis of trait ontogeny may refine our
understanding of trait evolution and may indicate that, in the
absence of consideration of trait ontogeny, assumptions of
quantitative genetic approaches may sometimes lead to a mis-
understanding of the quantitative genetic variation of traits
and inaccurate predictions about trait evolution within pop-
ulations.

Explicit consideration of the developmental interactions
that underlie phenotypic expression generates a number of
predictions regarding the relationships between the strength
and form of epigenetic interactions and quantitative genetic
parameters. These predictions inform us about how changes
(experimental or evolutionary) in the developmental program
or in the allelic composition of populations can impact quan-
titative genetic parameters. In general, we find that critical
quantitative genetic parameters, like the additive genetic var-
iance or covariance of traits, may be sensitive to changes in
the regulation of development that translates allelic variation
into phenotypic variation. In addition, we find that nonad-
ditive epigenetic effects can tie the evolution of genetic var-
iances and covariances to the phenotypic mean, thus com-
plicating our ability to predict the direction of evolutionary
change across many generations without knowledge of de-
velopmental architecture.

These results can be understood by examining the phe-
notypic landscapes that are generated by our model. In the
sections that follow, we discuss how to interpret phenotype
landscapes and then explain how different types of interac-
tions between modules generate different shapes of the phe-
notype landscape. We first explore simple linear landscapes
before moving on to more complex surfaces, showing how
even a simplistic appreciation of the mechanistic basis of
quantitative traits can improve our understanding of the
sources and evolutionary lability of quantitative genetic var-
iation.

Interpretation of the Phenotype Landscape

The phenotype landscape is a visualization of how some
underlying factors contribute to phenotypic values (Rice
1998, 2000; see Fig. 2). These underlying factors can be any
phenotypic components such as the value of underlying mod-

ules, the intrinsic genetic value of these modules, or envi-
ronmental effects. We view the phenotype landscapes pre-
sented here as surfaces of values that are functions of the
intrinsic genetic components of modules (Fig. 2). On the
phenotype landscape, a population exists as a distribution of
phenotypes determined by the current allelic variation of the
population. At any given time, the population only experi-
ences the region of the landscape covered by this distribution.
The average slope and curvature of the landscape in this
particular region determine the quantitative genetic param-
eters of the population (Rice 2000). The slope of the surface
determines the phenotypic variance as a function of the un-
derlying modules; higher variance is associated with steeper
slopes. Thus, the additive genetic variance produced by a
given amount of variance in an underlying module corre-
sponds directly to the slope of the surface along that axis.
When the slope is not constant across the landscape (i.e.,
when the landscape is curved), the position of the population
on the landscape will determine the average slope experi-
enced by a population (Rice 2000). Additive genetic vari-
ances therefore depend on the location of the population in
genetic space (i.e., the mean values of the intrinsic genetic
effects), as well as the form of developmental interactions
among modules (i.e., the magnitude and sign of epigenetic
effects) contributing to complex traits.

Phenotype landscapes can also be used to help us under-
stand covariances between traits. Multiple traits can be ex-
pressed as separate landscapes that are functions of the same
developmental modules (see Fig. 3). Genetic covariances are
positive if the gradients are of the same sign for both land-
scapes and negative when the gradients oppose. The genetic
covariance is zero only when the gradients of the landscapes
are at 908 angles to one another (see Fig. 3d). When the
gradients are at right angles the population can move along
a contour on one landscape while moving uphill or downhill
on the other landscape (see Fig. 3d). Thus, when the gradients
of two landscapes are at right angles the two characters can
evolve independently.

Linear Landscapes and Additive Effects

Intrinsic genetic effects on different modules can combine
to influence a single phenotype through epigenetic effects.
When all epigenetic effects between modules are additive,
they result in a planar landscape (Rice 1998, 2000) with a
gradient determined by the epigenetic effect coefficients, j12
and j21 (see eqs. 11 and 12). Thus, in this case, intrinsic
genetic effects contribute additive genetic variance in pro-
portion to their additive contribution to the phenotypic value
(as measured by j12 and j21, see eqs. 22 and 23). Because
slopes are constant across the landscape, a module’s effect
on additive variance is the same regardless of the location
of the population on the landscape. Thus, changes in the mean
can occur independently of changes in the additive genetic
variance, thereby allowing phenotypic evolution to proceed
without changing the genetic variances that determine future
evolutionary response (Lande 1979; Turelli 1988). However,
factors that lead to changes in the gradients of the phenotype
landscapes (i.e., changes in either ¹z1 or ¹z2) will result in
changes in the additive genetic variances (see Fig. 4a and
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FIG. 4. Quantitative genetic variation as a function of the additive epigenetic effect coefficients (j12 and j21). (a) The additive genetic
variance (G11 or G22) as a function of the values of the additive epigenetic effect coefficients (this single figure gives the additive genetic
variance of either character). This figure was drawn using equation (20) (eq. 21 for G22). The region of the surface near the (1,1) and
(21, 21) corners of the surface have been truncated to display a finer scale in the figure. These regions of the surface approach a
phenotypic value of infinity and are indicated in the figure by an ` symbol. (b) The additive genetic covariance (G12) between the two
traits as a function of the additive epigenetic effect coefficients. This figure was created using equation (24) assuming that there is no
covariance between the intrinsic genetic effects. The region of the surface approaching (1,1) and (21, 21) have been truncated because
they approach phenotypic values of 1` and 2`, respectively. (c) The genetic correlation between the two traits as a function of the
additive epigenetic effect coefficients (calculated using the data from Figs. 4a, b).

eqs. 22 and 23). Because the gradients of the two landscapes
do not change linearly with changes in the epigenetic effect
coefficients, the additive genetic variances also do not change
linearly with changes in the strength of epigenetic interac-
tions (eqs. 22 and 23). Rather, the slopes approach infinity
as the value of the product of the epigenetic effect coefficients
approaches one. This can be attributed to the feedback loop
between the two modules that regulates the development of
the two characters. This feedback loop can amplify variation
in the traits and therefore can lead to dramatic changes in
genetic variances when the strength of epigenetic interactions
changes.

Intrinsic genetic covariation between modules contributes
to the additive genetic covariance between traits because it
indicates that either allelic effects are contributing to multiple
modules (i.e., ‘‘intrinsic pleiotropy’’ sensu Atchley and Hall
1991) or there is linkage disequilibrium between loci influ-
encing the two characters. Beyond the contribution of this
intrinsic genetic covariation between modules, we find that
epigenetic interactions can produce genetic covariation be-
tween traits. Because of this, small changes in the value of
the additive epigenetic coefficient (i.e., either j12 or j21) can
lead to relatively large changes in the additive genetic co-
variance without any changes in the intrinsic genetic variance
or covariance (Fig. 4b). In this way, epigenetic effects can
modify the underlying developmental covariation between
traits. Whether the epigenetic effects increase or decrease the
additive genetic covariance depends on the sign of the effect
and the sign of the underlying intrinsic covariance (Fig. 4b).
As in the case of the additive genetic variance on planar
phenotypic landscapes, the genetic covariance will not
change with evolution of the mean phenotype because the
slopes are the same regardless of the location of population
in genetic space.

The effect of changing the strength of epigenetic inter-

actions on the quantitative genetics of a population can be
visualized using Figure 3, which shows four pairs of phe-
notype landscapes corresponding to four different values for
the two epigenetic effect coefficients (i.e., strengths of de-
velopmental interactions). The first three examples (Figs. 3a,
b, c) illustrate the effect of increasing the strength of epi-
genetic interaction while keeping the signs of the interaction
effects the same. We can begin by examining Figure 3a,
where the two epigenetic effect coefficients are relatively
small (both have a value of 0.15). The landscapes are rela-
tively flat, which is reflected in the small additive genetic
variance, Gii 5 1.07 for both traits (calculated assuming that
both intrinsic genetic variance have a value of 1.0). In this
case we also see that the two landscapes are nearly at right
angles to one another (i.e., the contour lines are nearly per-
pendicular), which results in a small genetic covariance, G12
5 0.314 (calculated assuming no intrinsic genetic covariance
and again assuming intrinsic genetic variances of 1.0). Fig-
ures 3b and 3c illustrate the impact of increasing the strength
of epigenetic interactions. First, we see that the landscapes
become steeper, which is reflected in the additive genetic
variances of the two traits in these two cases, which are 2.222
and 8.163 for the parameter values in Figures 3b and 3c,
respectively (calculated under the same assumptions as
above). From Figures 3a, b, and c we can also see that the
landscapes rotate and become aligned (i.e., the gradient vec-
tors converge) as the interaction effect becomes stronger,
which results in larger additive genetic covariances in these
two examples (where G12 5 1.778 for the case in Fig. 3b
and G12 5 7.837 for the case in Fig. 3c and under the as-
sumptions stated above).

In Figure 3d we see a case where the epigenetic effects
oppose one another (i.e., are of opposite sign). In this case,
the two landscapes are relatively flat because the feedback
loop between the modules during development acts to damp-
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FIG. 5. Additive genetic variance as a function of the mean value
of the intrinsic genetic effects contributing to the phenotype for the
nonadditive epigenetics case. The variance was calculated assuming
that the variance of both intrinsic genetic effects (V[a1] and V[a1])
are equal (having the value one). The variance was calculated using
equation (34) with a nonadditive epigenetic effect coefficient set at
a value of 0.5.

en the impact of genetic variation on phenotypic variation of
the two traits. This results in a small additive genetic variance
(where G11 5 G22 5 0.64 under the assumptions given
above). Also, the opposing epigenetic effects place the two
landscapes at right angles in this particular case, which results
in a zero genetic covariance despite the fact that the two sets
of intrinsic genetic effects contribute to the expression of
both characters. This outcome can be visualized using Figure
3d, where one can see that sliding along a contour line on
the landscape of z1 (which, by definition, results in no change
in the mean of z1) results in an uphill or downhill movement
on the landscape of z2.

Because epigenetic effects alter both genetic variances and
covariances, it may be more informative to examine the ge-
netic correlation between traits 1 and 2 as a function of the
epigenetic effect coefficients (Fig. 4c). We find a simple re-
lationship between epigenetic effects and the genetic corre-
lation: When both effects are negative, the genetic correlation
is negative, and when both are positive, the correlation is
positive. When the two coefficients are of opposite sign, the
sign of the genetic correlation is determined by the relative
magnitude of the two coefficients.

Developmental interactions do not affect trait heritability
because they influence both the environmental and additive
genetic variances in a similar way (see eqs. 22, 23, 25, 26).
Developmental interactions change the environmental vari-
ance at the same rate that they change the additive genetic
variance so the heritability ratio remains constant across all
values of epigenetic effect coefficients (j12 or j21). Nonethe-
less, additive epigenetic interactions can affect the response
of a trait to selection in two ways. First, such interactions
can inflate additive genetic variance even though the ratio of
additive genetic to phenotypic variance, i.e., the heritability,
does not change. Such changes thereby alter the ‘‘evolva-
bility’’ (sensu Houle 1992) of traits (i.e., their evolutionary
lability). Second, the value of the genetic covariance as a
function of the epigenetic effect coefficients (j12 or j21) does
not change at the same rate as the additive genetic variance
(see eqs. 22–24, Fig. 4). Therefore, changes in developmental
interactions between modules can alter additive genetic cor-
relations (Fig. 4c) and consequently affect correlated re-
sponses to selection and multivariate evolution.

Nonlinear Landscapes and the Evolution of Genetic
Variation

The most important consequence of nonadditive interac-
tions between modules (i.e., dij) during development is to
generate curvature of the phenotype landscape (Rice 1998,
2000). This curvature results in a variable slope across the
phenotype landscape and therefore genetic parameters de-
pend on the location of the population on the landscape. The
result is that the evolution of phenotypic means is correlated
with the evolution of genetic variances and covariances when
nonadditive epigenetic effects exist. Resulting changes in the
additive genetic variance covariance structure (usually rep-
resented as a matrix of variances and covariances, i.e., the
G-matrix) alter the rate and trajectory over the course of
phenotypic evolution (Lande 1979; Turelli 1988).

In our model, nonadditive effects are only unidirectional

and consequently can be considered as steps through ontog-
eny between interacting modules. The expression of the first
trait in the sequence (z1) depends only on the value of the
intrinsic genetic effect contributing to that trait (a1), so the
phenotypic landscape of this trait is a simple plane that slopes
only on the axis of a1. The second trait, developing later in
ontogeny, is influenced by nonadditive interactions between
the developmental modules (see eq. 31), resulting in a curved
phenotypic landscape with a slope that changes at a constant
rate as a function of the mean of each character (Fig. 2b).
As a result, additive genetic variance changes as a population
moves on the landscape (Fig. 5), increasing as the population
moves away from the saddle point on the phenotypic land-
scape (Fig. 2b). Similarly, the additive genetic covariance
between the traits increases linearly as a function of the mean
value for the intrinsic effects contributing to the traits at a
rate determined by the nonadditive epigenetic effect coeffi-
cient (eq. 35). Because of this relationship between the mean
and covariance structure, the additive genetic variance can
increase or decrease depending on the direction of evolution
and the curvature of the landscape. For example, if a pop-
ulation starts close to the saddle point on the landscape in
Figure 2b and selection drives it toward one of the corners,
the additive variance will increase during the course of se-
lection, accelerating the rate of evolutionary response to se-
lection. Similar results should be found in other mechanistic
models of quantitative variation (e.g., Cheverud and Routman
1995), where physiological interactions between loci make
the additive variance evolve as selection drives a population
through a range of gene frequencies.

Nonadditive epigenetic effects can link the evolution of
the mean to the evolution of covariance structure. At the same
time, they may also result in situations where variances can
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evolve while phenotypic means remain constant. Because of
this, two populations with the same variances in underlying
components (i.e., intrinsic genetic or environmental varianc-
es) can produce the same trait mean but with different phe-
notypic variances. Thus, populations can differentiate in their
genetic variances by sliding along contours of equal phe-
notypic value, without experiencing correlated changes in the
mean value of any traits (Rice 2000). This sort of evolution
of genetic variance has been considered an important com-
ponent in the evolution of genetic canalization (Rice 1998)
and is expected to occur when stabilizing selection is applied
to a population. This can easily be examined by combining
our model with a simple model of stabilizing selection.

The nonadditive epigenetic interactions also provide the
opportunity for G 3 E interactions to occur. Because the
nonadditive epigenetic effect in our model occurs when the
phenotypic value of module 1 interacts with the genetic value
for module 2, the environmental effects on module 1 (i.e.,
intrinsic environmental effects) can interact with the genetic
effects on module 2 (eq. 32). In this case, the G 3 E variance
is the same, regardless of the location of the population on
the landscape, and changes as a function of the square of the
nonadditive epigenetic effect coefficient. Because of the uni-
directional interaction, the other G 3 E variance and co-
variance have a value of zero. In both the additive and the
nonadditive model, we see that there can be environmental
covariances between traits even in the absence of intrinsic
environmental covariances. This relationship occurs because
the epigenetic effect transforms environmental effects on one
character into environmental effects on the other character,
thus producing environmental covariation between the traits.

Epistatic genetic variance is proportional to the curvature
of the phenotype landscape (eq. 38). In our two-trait model,
curvature is constant across the landscape. Evolutionary
changes in the mean phenotypes therefore do not lead to
changes in the amount of epistatic variance. It is also clear
from equation (36) that only extreme values of nonadditive
epigenetic effects (and consequently extreme curvature of the
phenotype landscape) will lead to high values of epistatic
genetic variance. In fact, most of the nonadditive interaction
between intrinsic effects is manifest as additive genetic var-
iance (see also Cheverud and Routman 1995).

Development obviously involves numerous steps and in-
teractions beyond the two-module scenario presented above.
We have restricted our model to the simple case to facilitate
a heuristic understanding of the role of development in evo-
lution, but our approach can be easily extended to examine
more complex patterns of interaction. The inclusion of ad-
ditional interactions, however, dramatically increases the
number of factors that influence genetic covariance structure.
In the appendix, we present a model that adds a third time
step (which could also be viewed as a third interacting mod-
ule) to the nonadditive model and show that factors that have
purely additive effects in earlier time steps contribute non-
additive variance in later time steps. This result implies that
selection may be more efficient earlier in development when
the constituents of genetic variance are more likely to be
purely additive. We also find that the addition of a third time
step creates a situation where the epistatic and G 3 E var-
iances change as a function of the location of the population

on the phenotype landscape. This interdependence occurs be-
cause the landscape for the third time step does not have a
constant curvature. Thus, we see that when development be-
comes more complex than the simple two-trait interaction
modeled above, all components of quantitative genetic var-
iation can change as a population evolves across the phe-
notype landscape.

Conclusions

Quantitative genetic theory provides a framework for un-
derstanding the dynamics of evolutionary change in a trait
without requiring knowledge of its underlying molecular ge-
netic and developmental architecture. However, the value of
quantitative genetic models for predicting evolutionary
change is largely determined by the accuracy of the as-
sumptions upon which they are built. We show how even a
simplistic appreciation of the developmental basis of quan-
titative traits can improve our understanding of the sources
and evolutionary lability of quantitative genetic variation.
Our model, in combination with other recent models analyz-
ing the constituents of quantitative genetic variation (e.g.,
Cowley and Atchley 1992; Cheverud and Routman 1995;
Rice 1998, 2000) demonstrates that not all sources of quan-
titative genetic variation are equivalent with respect to how
they impact phenotypic evolution over many generations.
More empirical studies are needed to determine the value of
considering trait development in quantitative genetic models
of evolution. To be most informative, such studies should
combine quantitative genetic studies with explorations and
manipulations of the proximate basis of trait ontogeny. These
sorts of studies have already begun to build our understanding
of modular interactions (e.g., Nijhout and Paulsen 1997; Klin-
genberg and Nijhout 1998; Nijhout and Emlen 1998; Emlen
and Nijhout 1999) and how the developmental system re-
sponds to selection on phenotypes (e.g., Brakefield et al.
1996). We should continue to build on these efforts to fully
elucidate how developmental interactions affect the structure
of quantitative genetic variation and the evolutionary trajec-
tories of populations.
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APPENDIX

In the text we analyzed the first two steps in a developmental
series. Here we add a third time step to the model to examine how
quantitative genetic parameters change as a function of the number
of steps in the developmental sequence. The definition of the value
of the third module in the series (M3) is analogous to the definition
of the module at time 2 (M2) presented in equation (31):

M 5 a 1 e 1 d a M .3 3 3 32 3 2 (A1)

We can substitute the definition of M2 given in equation (32), which
yields:

M 5 a 1 e 1 d a a 1 d a e 1 d d a a a3 3 3 32 3 2 32 3 2 32 21 3 2 1

1 d d a a e . (A2)32 21 3 2 1

The first three terms in equation (A2) are analogous to the terms
in equation (32). The last two terms do not appear at time step 2,
and represent higher-order interactions that can only occur further
down the developmental sequence. The first of these terms is a
three-way epistatic interaction that corresponds to additive-by-ad-
ditive-by-additive epistasis. The last term is a G 3 E interaction
term. This last term can be viewed as an epistasis-by-environmental
interaction, where the component of two-way epistasis between a2
and a3 is dependent upon the environmental effect (and vice versa).

As in the main model, the total phenotypic variance of M3 and
covariance between M3 and the other modules is simply the sum
of the appropriate components of genetic and environmental vari-
ance and covariance. In the three-trait system, we define three co-
variances. The first of these covariances, between M1 and M2, is
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given in the text. The variance of M3 and the remaining two co-
variances can be derived as above and are defined as:

P 5 V(M ) 5 G 1 I 1 J 1 E 1 V(G 3 E ) , (A3)33 3 33 33 33 33 33

P 5 C(M , M ) 5 G 1 I 1 J 1 E 1 V(G 3 E ) , (A4)13 1 3 13 13 13 13 13

and

P 5 C(M , M ) 5 G 1 I 1 J 1 E 1 V(G 3 E ) , (A5)23 2 3 23 23 23 23 23

where the parameters Gij, Iij, Eij, and V(G 3 E)ij are as defined in
the text, and the parameter Jij is a three-way epistatic interaction
(additive-by-additive-by-additive).

Following the derivation presented in the text, the additive ge-
netic variance and covariances involving M3 are defined as:

2 2 2G 5 V(a ) 1 d [ā V(a ) 1 ā V(a ) 1 2ā ā C(a , a )]33 3 32 3 2 2 3 3 2 2 3

2 2 2 2 2 2 2 21 d d [ā ā V(a ) 1 ā ā V(a ) 1 ā ā V(a )32 21 2 3 1 1 3 2 1 2 3

2 21 2ā ā ā C(a , a ) 1 2ā ā ā C(a , a )1 2 3 2 3 1 2 3 1 3

21 2ā ā ā C(a , a )]1 2 3 1 2

1 2d [ā V(a ) 1 ā C(a , a )]32 2 3 3 2 3

1 2d d [ā ā V(a ) 1 ā ā C(a , a ) 1 ā ā C(a , a )]32 21 1 2 3 1 3 2 3 2 3 1 3

2 2 2 21 2d d [ā ā V(a ) 1 ā ā V(a ) 1 ā ā C(a , a )32 21 1 2 3 1 3 2 2 3 1 3

21 ā ā C(a , a ) 1 2ā ā ā C(a , a ),2 3 1 2 1 2 3 2 3 (A6)

G 5 C(a , a ) 1 d [ā C(a , a ) 1 ā C(a , a )]13 1 3 32 3 1 2 2 1 3

1 d d [ā ā V(a ) 1 ā ā C(a , a ) 1 ā ā C(a , a ),32 21 2 3 1 1 2 1 3 1 3 1 2

(A7)

and

G 5 C(a , a ) 1 d [ā V(a ) 1 ā C(a , a )]23 2 3 32 3 2 2 2 3

1 d d [ā ā V(a ) 1 ā ā C(a , a ) 1 ā ā C(a , a )]32 21 1 3 2 1 2 2 3 2 3 1 2

1 d [ā C(a , a ) 1 ā C(a , a )]21 1 2 3 2 1 3

21 d d [ā ā C(a , a ) 1 ā ā V(a ) 1 ā C(a , a )32 21 1 2 2 3 1 3 2 2 1 3

1 ā ā C(a , a )]2 3 1 2

2 2 2 21 d d [ā ā V(a ) 1 ā ā V(a ) 1 ā ā C(a , a )32 21 2 3 1 1 3 2 1 2 1 3

21 ā ā C(a , a )1 2 2 3

1 2ā ā ā C(a , a )].1 2 3 1 2 (A8)

The two-way (additive-by-additive) epistatic genetic variance
and covariances are defined as:

2 2I 5 d [V(a )V(a ) 1 C (a , a )]33 32 2 3 2 3

2 21 d d [4ā ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]32 21 2 3 1 2 3 1 2 1 3

1 4ā ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]1 3 2 1 3 1 2 2 3

1 4ā ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]1 2 3 1 2 1 3 2 3

2 21 ā [V(a )V(a ) 1 2C (a , a )]3 1 2 1 2

2 21 ā [V(a )V(a ) 1 2C (a , a )]2 1 3 1 3

2 21 ā [V(a )V(a ) 1 2C (a , a )]1 2 3 2 3

2 2 22 2 22 ā C (a , a ) 2 ā C (a , a ) 2 ā C (a , a )1 2 3 2 1 3 3 1 2

2 2ā ā C(a , a )C(a , a )1 2 1 3 2 3

2 2ā ā C(a , a )C(a , a )1 3 1 2 2 3

2 2ā ā C(a , a )C(a , a )]2 3 1 2 1 3

1 2d d [V(a )C(a , a ) 1 2C(a , a )C(a , a )]32 21 3 1 2 1 3 2 3

21 2d d [2ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]32 21 2 3 1 2 1 3 2 3

1 2ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]3 2 1 3 1 2 2 3

21 ā [V(a )V(a ) 1 2C (a , a )]1 2 3 2 3

22 ā C (a , a ) 2 ā C(a , a )C(a , a )1 2 3 2 1 3 2 3

2 ā C(a , a )C(a , a )],3 1 2 2 3 (A9)

I 5 d d [V(a )C(a , a ) 1 2C(a , a )C(a , a )], (A10)13 32 21 1 2 3 1 2 1 3

and

I 5 d d [V(a )C(a , a ) 1 2C(a , a )C(a , a )]23 32 21 2 1 3 1 2 2 3

1 d d [C(a , a )C(a , a ) 1 V(a )C(a , a )]32 21 1 2 2 3 2 1 3

21 d d [2ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]32 21 2 1 2 3 1 2 1 3

1 2ā [V(a )C(a , a ) 1 2C(a , a )C(a , a )]1 2 1 3 1 2 2 3

21 ā [V(a )V(a ) 1 2C (a , a )]3 1 2 1 2

22 ā C (a , a ) 2 ā C(a , a )C(a , a )3 1 2 2 1 3 1 2

2 ā C(a , a )C(a , a )].1 1 2 2 3 (A11)

The three-way (additive 3 additive 3 additive) epistatic genetic
variances for M3 is defined as:

2 2 2J 5 d d [12V(a )C (a , a ) 1 8C(a , a )C(a , a )C(a , a )33 32 21 2 1 3 1 2 1 3 2 3

2 21 2V(a )C (a , a ) 1 2V(a )C (a , a )1 2 3 3 1 2

1 V(a )V(a )V(a )].1 2 3 (A12)

All other three-way interaction variances have a value of zero by
definition.

The environmental variances and covariances are defined as:
2 2 2 2 2 2E 5 V(e ) 1 d [ā V(e )] 1 d d [ā ā V(e )] 1 2d ā C(e , e )33 3 32 3 2 32 21 2 3 1 32 3 2 3

2 21 2d d [ā ā C(e , e )] 1 2d d [ā ā C(e , e )],32 21 2 3 1 3 32 21 3 2 1 2 (A13)

E 5 C(e , e ) 1 d ā C(e , e ) 1 d d ā ā V(e ), (A14)13 1 3 32 3 1 2 32 21 2 3 1

and

E 5 C(e , e ) 1 d ā V(e ) 1 d d ā ā C(e , e )23 2 3 32 3 2 32 21 2 3 1 2

1 d ā C(e , e ) 1 d d ā ā C(e , e )21 2 1 3 32 21 2 3 1 2

2 21 d d ā ā V(e ).32 21 2 3 1 (A15)

The G 3 E variances and covariances are defined as:
2V(G 3 E ) 5 d V(e )V(a )33 32 2 3

2 2 21 d d [4ā ā V(e )C(a , a ) 1 ā V(e )V(a )32 21 2 3 1 2 3 3 1 2

2 21 ā V(e )V(a ) 1 2V(e )C (a , a )2 1 3 1 2 3

1 V(e )V(a )V(a )]1 2 3

1 2d d C(e , e )C(a , a )32 21 1 3 2 3

21 2d d [ā V(a )C(e , e )32 21 2 3 1 2

1 2ā C(a , a )C(e , e )],3 2 3 1 2 (A16)

V(G 3 E ) 5 d d V(e )C(a , a ), and (A17)13 32 21 1 2 3

V(G 3 E ) 5 2d d C(a , a )[C(e , e ) 1 C(e , e )]23 32 21 2 3 1 2 1 2

21 d d [2ā V(e )C(a , a ) 1 ā V(e )V(a )].32 21 2 1 2 3 3 1 2 (A18)

The addition of the third module changes the behavior of the
quantitative genetic variances. First, if we examine the additive
genetic variance and covariances for the trait at the third time step,
we see that the general structure of the variances is similar to that
presented for trait 2. However, the variance and covariances are
now contingent upon the location of the population in three-di-
mensional genetic space (i.e., depends on the means of all three
intrinsic components) and also depends on the covariance between
all intrinsic effects.
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Whereas the additive genetic variance and covariances have a
similar structure to those associated with z2, the epistatic variance
and covariances are very different. Epistatic variance now depends
on the location of the population in three-dimensional genetic space.
Because of this, the epistatic variance evolves as the population
moves on the phenotype landscape. Thus, selection or drift can alter
the relative contribution of additive and epistatic variance to phe-
notypic variation and modify the evolutionary potential of a pop-
ulation. Covariation between intrinsic genetic effects plays a par-
ticularly important role in determining the magnitude of the epistatic
variance. Changes in the underlying covariance between intrinsic
effects can affect the ratio of additive to nonadditive components.

The addition of a third interacting unit also allows for nonadditive
genetic covariances (eqs. A10 and A11). Because trait 3 shows
epistatic interactions arising from nonadditive effects of a3 with a2
and a1, a three-way epistatic interaction now appears (see eq. A12).

Finally, we see that the addition of a third time step makes the
G 3 E variance contingent upon the location of the population in
genetic space. This provides a mechanism for the evolution of G
3 E variance, which may be important in models of phenotypic
plasticity and environmental canalization. Nonadditive interactions
during development create a situation where the G 3 E variance
is not constant for all combinations of genetic and environmental
effects.


