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Visualizing and quantifying 
natural selection 

Edmund D. Brodie III, Allen 1. Moore and Fredric 1. Janzen 

‘atural selection is one of N the primary mechanisms 
driving organic evolution. 
A thorough comprehen- 

sion of the occurrence, form and 
significance of selection in natural 
populations is therefore critical to 
our understanding of the evolu- 
tionary process. Accordingly, one 
of the major foci of current evolu- 
tionary research is the detection, 
demonstration and description of 
selection in nature’. Most studies 
of selection have concentrated on 
documenting its existence. Many 
different techniques can be imple- 
mented to achieve this goall-3. 
However, selection can be a com- 
plicated process, and the publica- 
tion of a seminal paper by Lande 
and Arnold4 stimulated consider- 
able interest in the details of selec- 
tion. For the first time, empiricists 
were provided with tractable sta- 
tistical machinery to dissect selec- 
tion into components that target 

Modern methods of analysis are enabling 
researchers to study natural selection at a 
new level of detail. Multivariate statistical 
techniques can identify specific targets of 
selection and provide parameter estimates 

that fit into equations for evolutionary 
change. A more intuitive understanding 
of the form of selection can be provided 

through graphical representation of 
selection surfaces. Combinations of 
quantitative and visual analyses are 

providing researchers with new insights 
into the details of natural selection 

in the wild. 
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specific traits. Furthermore, selection could be described 
using parameters5 that integrate into equations that de- 
scribe intergenerational evolutionary change. These param- 
eters also can be used to visualize selection, allowing a 
more intuitive understanding of the relationship between 
phenotypes and relative fitness. Subsequent innovations 
increased the generality and flexibility of the graphical 
approach to examining selections-8. 

With these modern approaches has come a wave of new 
logistical considerations from the collection of relevant data 
to statistical caveats to interpretation of parameterssJQ-ll. 
Empiricists now have a bewildering array of choices for ana- 
lyzing the details of selection, most of which yield different 
types of information. We hope to offer some guidance toward 
the use of statistical and graphical techniques to describe 
the targets and mode of selection by focusing on the most 
widely used methods. 

Natural selection as a function 
Selection is a phenomenon that affects the phenotypic 

distribution of a population (Box l), but the mechanism of 
selection works on individuals through the effect of an indi- 
vidual’s phenotype on its fitness. Most biologists immedi- 
ately think of selection as a process affecting character states 
or the mean value of a trait (‘directional’ or ‘linear’ selection), 
but selection also can change variances (‘stabilizing’, ‘dis- 
ruptive’ or ‘univariate nonlinear’ selection) and even covari- 
antes between two traits (‘correlational’ or ‘bivariate 
nonlinear’ selection). This can be a confusing perspective 
because selection acts on individuals, not on moments of a 
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distribution-the action of selection 
differs from the effect of selection. 

Selection affecting a mean is 
easily understood as selection 
acting on individual trait values. 
However, to evaluate the influence 
of selection through individuals on 
variances and covariances, we 
must express individual traits as 
deviations from the mean pheno- 
type (Z =z-Z) (Ref. 4). With trait 
values transformed to a mean of 
zero, it becomes trivial to examine 
selection targeting the extreme 
phenotypes (i.e. greatest devia- 
tions from the mean), and thereby 
estimate the modes of selection 
that affect variances and covari- 
antes (see below). 

Natural selection therefore can 
be viewed as the covariance 
between trait values and their 
expected relative fitnesses. The 
mathematical function describing 
this relationship can easily be de 
rived by regression analysis of data 

on individual phenotypes and fitness (Table 1, Boxes 2,3). 
Elements of selection functions can provide quantification of 
the strength of different modes of selection (Box l), selection 
targeting specific traits and the intensity of total selection (of 
all modes) experienced by a trait. Some of these elements 
can be used to further evaluate selection by graphically rep- 
resenting the relationship between fitness and phenotype. 

Measures of selection related to quantitative 
genetics 

In the mid-1980s a group of researchers that has since 
become known as the ‘Chicago School’ of evolutionary bi- 
ologylz advanced an approach to studying selection and 
response to selection that had long been used by plant and 
animal breeders. The parameters estimated in this quantita- 
tive genetic approach-opportunities, differentials and gra- 
dients - provide a hierarchy of information about selection. 
The appeal of these parameters comes from the explicit bio 
logical interpretation and simple statistical estimation of 
each type of coefficient (Table 1). The relevance of selection 
to the evolutionary process can be formally understood 
through these parameters because each one fits into the 
equations for intergenerational change originally developed 
by domestic breeders and adapted to evolutionary biologyls. 

The total potential for selection to act in a population is 
estimated by the opportunity for selection (I) (Refs 14-16). 
This parameter is useful as an upper bound on how strong 
selection could be, but is not especially satisfying because 
it does not describe any relationship between fitness and 
a trait. 
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Box 1. Modes of nahmd selection 
We can distinguish the process of natural selection, which is a change in the phenotypic distribution within a generation, 
from its outcome, evolutlon, which is a change in the phenotypic distribution across generations32J3. Inheritance is the 
biological mechanism that transmits the effects of selection across generations, thereby causing evolutionary change. 
Biologists have most commonly and profitably studied natural selection without demonstrating or quantifying inheritance, 

Selection is a covariance between phenotypes and expected relative fitness (w) and can be categorized based on its 
impact on phenotypic distributions. Illustrations show the view of selection as a function (above), and the within-generation 
change in the phenotypic distribution (below; solid curves before selection, dashed curves after selection). 

deviations from the mean (2) 
to estimate these parameters, 
After subtracting the influence 
of the linear selection differ- 
entiaW, the difference in the 
variance of a trait before and 
after selection is the univari- 
ate nonlinear selection differ- 
ential, whereas the difference 
in a covariance is the bivariate 
nonlinear selection differen- 
tial. 

Trait Trait Trait 

Directional selectlon: linear selec- 
tion for higher or lower phenotypic 
values, detected by an association 
between the mean of a trait and fit- 
ness. Directional selection increases 
(positive) or decreases (negative) 
the trait mean. 

Stabilizing selectlon: concave non- 
linear selection against extreme 
phenotypes, detected by a negative 
relationship between the second 
moment of a distribution and fitness. 
Stabilizing selection decreases the 
variance of a trait. 

Disruptive selectlon: the opposite of 
stabilizing selection -convex nonlin- 
ear selection against intermediate 
phenotypes detected by a positive 
relationship between the second 
moment of a distribution and fitness. 
Disruptive selection increases the 
variance of a trait. 

The use of the same terms to describe selection surfaces as well as statisti- 
cal relationships can be misleading because it is not always clear where one form 
of selection ends and another begins 4Jjf8,g. Directional, stabilizing and disruptive 
selection, as described above, fit the traditional interpretations of features of 
selection surfaces including peaks, valleys and sad 
dles. These same terms also have been used to Correlatlonal selection: 
identify various selection coefficients. However, nonlinear selection on (U 
these quantitative measures of selection describe 
precise statistical relationships between fitness and 

combinations of traits, .s 
detected by a relationship $ 

moments of phenotypic distributions (e.g. means, between the second mo 
variances), but not necessarily distinct topographical ment of a bivariate distri- 
features. To avoid misinterpretations, we suggest bution for a pair of traits 
labels that more accurately reflect the graphical infor- and fitness. Correlational 
mation contained in the coefficients estimated from selection changes the co 
formal stastistical analyses. linear coefllcients (pm- variance between two 
viously ‘directional’4*6) describe selection that traits. (Fitness function 
affects the mean of a trait, while nonllnear coefli- shown as a saddle- 
clents (previously ‘quadratic? or ‘stabilizing/disrup shaped contour plot with (u 
tive’ and ‘correlational’“) describe selection that highest expected fitness *= 
affects second (and higher) moments of distributions marked as ‘+‘.) 

E 

such as variances and covariances. We can further 
distinguish unlvarlate nonllnear coefficients from blvadete nonlinear coefficients, 
because the latter specifically describe selection simultaneously acting on two dif- 
ferent traits, such as would describe correlational selection. The extent that linear 
or nonlinear selection corresponds with traditionally defined modes of selection 
can be determined using a univariate or multivariate visualization technique6,8. 

The simplest measure of selection on a particular trait is 
the selection differential, which measures total change re- 
sulting from selection4JJJ. Differentials do not distinguish 
between changes resulting from selection that directly links 
a trait with fitness (direct selection) and changes result- 
ing from correlations with other traits affecting fitness (in- 
direct selection). Linear selection differentials (S) measure 
changes in trait means. Nonlinear selection differentials (C) 
measure changes in the variance of a trait or the covariance 
between two traits independent of the effects of linear selec- 
tion (which itself can cause changes in variances and covari- 
ances4). Again, selection does not act directly on moments 
of a distribution, so we use individual traits measured as 

A useful comparative meas- 
ure of the strength of total 
selection experienced by any 
single trait is the intensity of 
selection (i) (note that Crow15 
originally called his ‘opportu- 
nity for selection’ the ‘inten- 
sity for selection’, I, but the 
terminology has since been 
changed to avoid confu- 
sion)4J4. Intensity is nothing 
more than a selection differ- 
ential measured on standard- 
ized traits (Z = 0, SD = 1). The 
resultant differentials, or in- 
tensities, are all of the same 
scale and are directly com- 
parable among traits or popu- 
lations as measures of the 
relative strength of a given 
mode of selection. A second 
measure of overall strength of 
selection, also called intensity 
(V), is derived from a non- 
parametric regression analy- 
siss (see below, ‘Graphical 
representations of selection’). 
This ‘total selection intensity’ 
is similar to Manly’s index of 
selection*, and reflects the 
strength of selection on a trait 
considering all modes of 
selection simultaneously. 

Selection gradients are 
measures of the link between 
fitness and a particular trait, 
independent of other meas- 
ured correlated traits, and 
are obtainable as partial 
regression coefficients from a 
multiple regressio&6. As with 
any regression analysis, the 

partial regression coefficients, or gradients, only measure 
the effect of a variable independent of the other variables 
included in the modeW. To the extent that all relevant traits 
are analyzed, gradients measure selection directly on a trait 
or combination of traits. Linear selection gradients (p) can 
be combined with estimates of genetic variances and covari- 
antes to predict the multivariate response to selection, tak- 
ing into account the effect of selection on correlated traits 
and thereby providing a more accurate picture of short- 
term evolution thanunivariate analyses4S6J7J*. 

Quadratic forms of variables can be used to describe 
curvature of a function or surface and estimate the nonlinear 
selection gradients (r). A quadratic regression provides 

Trait 1 
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Parametera 

Opportunity for 
selectionlJ,l5 

Intensity of selection7,s.b 

Selection differential - 
linear selection4.6J4 

Selection differential - 
univariate nonlinear 
selection4f6,14 

Selection differential - 
bivariate nonlinear 
selectior+14 

Selection gradient - 
linear selection4.6.9J4 

Selection gradient - 
univariate nonlinear 
selection4Jj.9J4 

Selection gradient - 
bivariate nonlinear 
selectiorW9,14 

Table 1. Quantitative measures of selection 

Symbol Determined by: Formula Interpretation 

I 

V 

S, 

c,, 

Cl, 

P, 

Yi, 

yu 

Variance in relative fitness. 

Variance in expected relative 
fitness [f,(z)], where ? is 
estimated from nonparametric 
regression. 

Difference in trait means 
(7,) before and after selection, or 

covariance between relative 
fitness and trait. 

Difference in trait variance before 
and after selection, or 

covariance between relative 
fitness and squared deviation (Y2). 

Difference in trait covariance before 
and after selection, or 

covariance between relative fitness 
and cross-product of deviations 
(ZiZ,,. 

Multiple regression (purely linear 
model). 

Multiple regression (full model 
including linear, squared and 
cross-product terms). 

Multiple regression (full model 
including linear, squared and 
cross-product terms). 

“AR(G) Upper limit of the strength of selection. 

“AR(%) Overall strength of selection (linear and 
nonlinear combined). 

mter - Lzhdo,e 
COV( w,z) 

Total change in the mean phenotype 
within a generation (total linear 
selection). 

‘JAW,),,,, - VAW,),,,+ s: 
COV( w,?) 

COV(z,.zJ,,. -  cww/h2efm+ 

COV( w,Z,Z,). 

Partial regression coefficient 
for 2,. 

Partial regression coefficient 
of squared term (z”,z). 

SiSi 

Total change in the variance of a trait 
within a generation after adjusting for 
directional selection (total nonlinear 
selection). 

Total change in the covariance of two 
traits within a generation after 
adjusting for directional selection (total 
nonlinear selection on a combination 
of traits, i.e. correlational selection). 

Partial change in the phenotypic mean 
(direct linear selection). 

Partial change in the variance of a 
character (direct nonlinear selection). 

Partial regression coefficient 
of cross-product term (2,2,). 

Partial change in the covariance between 
two characters (direct nonlinear 
selection on a combination of traits). 

aParameters estimated from statistical procedures may or may not correspond directly to the qualitative aspects of the processes of interest (Box 1). However, in all 
cases, the statistical measures are more general than the qualitative descriptors and therefore embody classical processes. 
bA second measure of the ‘intensity of selection’ (i) is the selection differential measured on traits standardized to I= 0, SD = 1. 

coefficients that describe selection affecting thevariances and 
covariances of traits independent of other analyzed trait&G. 
The y values are usually estimated from a regression that is 
separate from that used to estimate the p values because of 
correlations between linear and quadratic variablessV4. Partial 
regression coefficients of squared deviations from the mean 
(22) describe nonlinear selection directly acting to reduce 

,the variance when negative, and increase the variance when 
positive. Univariate nonlinear selection gradients describe 
only convexity (y< 0) and concavity (y > 0) of a function, not 
necessarily an intermediate peak or valley. For this reason, 
y values do not necessarily describe traditional stabilizing 
or disruptive selection (Box 1, Fig. 1)Q. Coefficients that re- 
late fitness to the product of two traits expressed as devia- 
tions (ZiZj) describe selection that directly targets specific 
combinations of the two traits simultaneously. These bivari- 
ate nonlinear selection gradients may be roughly interpreted 
as favoring similar combinations of traits when positive, or 
opposite combinations of traits when negative6Js. The pre- 
cise interpretation of selection on two traits requires knowl- 
edge of all linear and nonlinear gradients and is most readily 
obtained through graphical representation” (Figs 1,2). 

Path analyses of selection 
A complementary approach to revealing the direct re- 

lationships between traits and fitness is path analysisr0S20~21. 
A ‘path’ diagram is constructed based on an u priori under- 
standing of the causal interactions among traits and fitness, 
and multiple regression is employed to calculate path co 
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Box 2. Data collection for analysis of selection 
Describing selection requires estimating a function that relates phenotypic values 
to expected fitness. Longitudinal data that include measures of fitness and trait 
values on multiple individuals provide the best estimates of fitness functionsd. Linear 
aspects of selection functions are much easier to detect than curvature, peaks and 
valleys. The precise sample sizes required depend on the subtleties of the function, 
but samples of hundreds of individuals are likely to be needed to reveal nonlinear 
selection in many studies (Figs 1,2)lg. Multivariate studies of selection should 
attempt to measure all relevant correlated traits that might affect the fitness corn 
ponent under study. This will minimize the problem represented by unmeasured 
characters when interpreting the results of regression analyses. Of course, real 
data sets often will violate assumptions of parametric significance testing, so alter- 
native methods, including jackknife, bootstrap and randomization tests, or probit 
or logistic regression, should be used to evaluate the statistical signficance of param 
eter estimates4,9.19.28,3.35. Other statistical considerations, including problems of 
highly correlated phenotypic traits, have been discussed elsewhere3,4,g. 

Cross-sectional data do not include individual measures of fitness and so 
cannot be analyzed with the statistical and graphical techniques described herein. 
However, comparisons between phenotypic distributions of different age groups 
sampled at a single point in time can be used to calculate some parameters, includ 
ing selection differentials and intensities4. Under a set of restrictive assumptions, 
cross-sectional data sometimes can be used to calculate selection gradients 
through the basic equations provided by Lande and Arnold4. 

efficients that illustrate the effect of one trait on thevariation 
in another. Resulting paths are completely dependent upon 
the (1 prioti model chosen, so path analysis is most useful as a 
tool to test competing hypotheses of trait interactions22. Path 
analysis further assumes that all relationships are linear and 
so is only appropriate when all selection acting is directional 
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Box 3. Measuring fitness 
All studies of selection rely on measures of fitness. However, fitness is not 
measured directly, but estimated by quantifying related traits including fitness 
components. For example, fertility and/or fecundity (e.g. number of offspring 
produced), survival (e.g. alive or dead following an event or interval) and mating 
success are frequently used as estimates of fitness in selection studiesll. 
Other traits, such as growth rate or access gained to limited resources, are 
sometimes argued to reflect fitness differences among individuakYJ5. 
Although lifetime measures are ideal, researchers often can measure only a 
portion of the individual’s lifetime reproductive success, such as territory 
success or survival as an adult. Interpretations of descriptions of selection 
should consider the limitations of the fitness measure employed. The best 
fitness measure is one that is based on the biology behind the question 
being investigated, and one that generates testable predictions for natural 
populations. 

Continuous and discrete measures of fitness can be accurately analyzed 
using standard statistical methods, though nonparametric significance tests 
are generally required4.9Jl. When fitness is measured categorically (e.g. mating 
success, age of death), a strong biological rationale must underlie the numerical 
assignment of fitness values (e.g. fitness values of 0, 1, 2 will give different 
quantitative parameters than 1, 2, 3)11. When fitness is measured at multiple 
life stages or in different episodes, a partitioned study of selection can be 
performed14J6. Such an approach can reveal how a particular character 
experiences different selection during different life stages, or how a trait can have 
opposing effects on different fitness components. For example, dragonflies 
experience linear selection on body size as it affects territorial success, but 
nonlinear selection on body size as it affects fertilization success35. 

(a) 0.2 T 

g 
- 0.2 

$ -0.4 
Ii 

- 10.6 

-0.8 

“33 -2 -1 0 1 2 
Elevation 

and linear. Because paths are obtained by multiple regres- 
sion on standardized variables, they are equivalent to stan- 
dardized linear selection gradients (p) in path models 
where all traits directly affect fitnesslo. 

Path analysis is also useful when simultaneously study- 
ing selection on phenotypic traits and organismal perfor- 
manceza. Some traits may be expected to affect fitness di- 
rectly, or through an intervening performance measure, and 
path analysis can reveal such relationships. Additionally, 
the importance of unmeasured traits (as a part of the unex- 
plained variation in fitness) can be considered by including 
paths for unmeasured variable+‘. 

Graphical representations of selection 
The parameters for quantifying selection, mentioned 

above, present many benefits for understanding the strength, 
form and targets of selection, but the numerical values may 
not lead to intuitive descriptions of selection. Perhaps the 
greatest advantage of modern selection analysis techniques 
is the ability to generate visual depictions of the form of 
selection (e.g. Figs 1,2). The metaphor of a landscape or sur- 
face of selection is quite useful for understanding the con- 
nection between traits and expected fitness. The distinctions 
among types of fitness surfaces have been neatly sum- 
marized by Phillips and Arnold”. 

Selection gradients ob 
tained from a quadratic re- 
gression can be used to 
construct the selection sur- 
face that describes the rela- 
tionship between an indi- 
vidual’s phenotype and its 
expected fitness. Gradients 
describe the average slopes 
(p) or curvatures (7) of the 
selection surface. Because of 
the constraints of quadratic 
regression, this surface is 
only the ‘best quadratic 
approximation’ of the true 
selection surface6. By simply 
plotting the response surface 
described by the gradients, 
either univariate or bivariate 
views of the selection sur- 
face can be obtained. 

“4 -2 0 2 
*$j White patch 

-2 -1 0 1 2 -2 -1 0 1 2 
Elevation White patch 

Fig. 1. Three-dimensional visualizations of selection. Two alternative methods of graphical representation of selection 
surfaces are shown. The top graphs depict bivariate surfaces with fitness increasing along the vertical axis. The bottom 
graphs are contour plots of the same surface, with each line depicting a line of equal fitness. Graphs are best quadratic 
approximations of the selection surfaces, drawn from published selection gradients on standardized traits35,37. (a) shows 
selection on the slope and elevation of reaction norms relating gall size to lag time in a gall-forming insect ( zI= slope, 
z2= elevation, PI= 0.122, p,=O.O28, y,,=-0.072, y,,=-0.052, y,,=O.O62) (Ref. 37). (b) shows selection through mating 
success on the relative sizes of brown and white wing patches in a dragonfly ( zI= brown patch size, z2= white patch size, 
PI= 0.497, p,=O.778, y,,=-0.217, y,,=O.106, y,,=O.535) (Ref. 35). Gradients in both studies were of similar sign, yet 
the bivariate pattern of selection was completely different, shown as a rising ridge for selection on reaction norms and a 
saddle shape for selection on wing color patches. This figure demonstrates the need to visualize selection surfaces to 
understand fully the details of selectione. 

True selection surfaces 
may be much more complex 
than the smooth functions 
estimated by quadratic re- 
gression. Also, some combi- 
nations of phenotypic dis- 
tributions and directional 
selection can yield mislead- 
ing quadratic gradients that 
describe curvature of a func- 
tion where none exists. These 
considerations led Schluter8 
to propose nonparametric 
regression as an alternative 
means of estimating the 
mode of selection that would 
allow for the estimation of 
complex functions with mul- 
tiple peaks and valleys. The 
original form of this visuali- 
zation technique, known as 
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Fig. 2. Parametric and nonparametric visualizations of selection. The 
two selection surfaces shown illustrate how (a) parametric and(b) non 
parametric approximations of the selection surface may yield some 
what different interpretations. Both plots are calculated from the same 
data set examining the effect of color pattern and behavior on survival 
in garter snake@. Both estimated surfaces suggest a similar form of 
selection, where individuals with opposite combinations of color pattern 
and antipredator behavior have greatest expected fitness. However, 
differences between the two surfaces are apparent. The quadratic 
approximation (a) shows a saddle-shaped surface, with dips in the sur- 
face (lowest fitness) associated with extreme high or extreme low values 
of both traits. The nonparametric estimation (b) of selection does not 
indicate such dips. Rather, the nonparametric surface suggests an 
even valley of low fitness for all similar values of the two traits, including 
intermediate values. A slight dip in fitness is also suggested for individ- 
uals with particularly high values of reversal behaviors and low values of 
stripedness, though this dip is based on only a few individuals. The dif- 
ferences between the parametric and nonparametric surfaces probably 
result from the symmetrical shape described by quadratic coefficients 

the ‘cubic spline’, was limited to univariate analyses, and so 
could not reveal correlational selection on combinations of 
traits. A recent advance7 has extended this approach to mul- 
tiple traits, and it is now possible to estimate functions that 
can describe complicated multivariate fitness surfaces. These 
nonparametric techniques are useful both to qualitatively 
describe the selection surface and to quantify expected fit- 
nesses of phenotypes in the population, which can be used 
to calculate the overall selection intensity (V) (Table 1). 
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Graphical representation of selection is generally limited 
to considering one or two traits at a times,7 because of the 
difficulty of visually depicting more than three axes sim- 
ultaneously. Selection acting simultaneously on multiple 
traits can be considered by performing a principal com- 
ponents analysis on a suite of traits and plotting selection as 
a function of the principal components@J. However, it is not 
clear that selection ever acts on principal axes of pheno 
typic variation and it is difficult to translate from selection 
on principal components to selection on the original traits. 

Selection on three traits can be visualized as a series of 
nested three-dimensional solids using a canonical analysis 
technique@Qs to transform the original traits to the major 
axes of the selection surface so that bivariate curvature 
(correlational selection) is no longer an issue. This trans- 
formation differs from principal components because the 
major axes of the selection surfaceperse, not of phenotypic 
variation, are determined. Thus, the transformed variables 
should accurately describe major targets of selection (in 
contrast to principal components), but the interpretation of 
such surfaces is problematic because axes no longer corre- 
spond to the original traits. For the adventurous, Phillips 
and Arnold6 also point out that a third or fourth trait can be 
visualized by animating the surface, where time becomes 
the fourth axis. 

Schluter and Nychkar take a similar (but nonparametric) 
approach to visualizing the relationship between fitness 
and multiple traits. They recommend projection pursuit 
regression as a complement to the univariate spline. This 
technique assumes that most selection acts on one or a 
few phenotypic dimensions. The analysis defines avector of 
traits (a ‘projection’ or ‘direction’) that experiences the 
strongest selection. These new directions are comprised of 
various loadings of the original traits and can be used to ex- 
amine selection on any number of variables, though visuali- 
zations are still restricted to three-dimensional surfaces. 
One advantage of this approach is that the mulitvariate vec- 
tors studied are those experiencing the strongest selection, 
not arbitrary rotations of phenotypic space such as principal 
components7. 

Limitations and combinations of approaches 
Each of the selection analysis techniques mentioned 

above offers trade-offs between the two main goals of 
selection analysis - estimation of quantitative selection 
coefficients and functional interpretation of the force of 
selection. Accordingly, the most complete and revealing 
studies of natural selection will use combinations of these 
approaches26Jr. The choice of analytical technique should 
be dictated by the goals of the specific research and the 
available data. When individual measures of phenotype and 
fitness are not available, researchers can still demonstrate 
selection using traditional method@ and sometimes even 
can calculate opportunities or differentials (see Box 2). More 
complete data sets provide more options for analysis, and 
decisions should be based on the importance of revealing 
specific modes, targets and details of selection. Fortunately, 
these methods are not exclusive and all are performed easily 
on personal computers with simple software packages. 

The nonparametric visualization techniques pioneered 
by SchluterrJ provide the most flexible approximations of 
selection surfaces, and thereby present the most-detailed 
pictures of total selection affecting a particular trait or 
combination of traits (Figs 2,3). These are the only methods 
currently available to detect selection functions that are 
asymmetrical, or that have multiple peaks28 or sudden 
changes in fitness (e.g. step-functions). Nonparametric 
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Fig. 3. Hypothetical spline selec- 
tion surface showing an asymmetri- 
cal function. A parametric regression 
analysis would suggest negative di- 
rectional selection (dashed line). A 
nonparametric visualization reveals 
some subtleties of the function. 
While selection is basically negative 
and directional, most of the fitness 
differences are actually found at 
either end of the phenotypic distri- 
bution Intermediate values of the 
phenotype have more or less equal 
fitness. These details would not be 
discovered by parametric regression 
analysis alone. 

analyses can be further em- 
ployed to suggest appropriate 
models for subsequent parameter 
estimation. The multivariate 
spline also allows researchers to 
visualize selection on more than 
two traits and to disentangle 
direct from indirect selection by 
considering the loading of origi- 
nal traits on the major axes of 
the selection surface. Quantita- 
tive measures of particular modes 
of selection (e.g. linear versus 
nonlinear) that can be used to 
statistically compare selection 
among characters, episodes or 
populations are not provided by 
nonparametric analyses. How- 
ever, splines can be used to 
investigate the importance of dif- 
ferent modes of selection by 
constraining the shape of the 
estimated functions. 

When a quadratic function 
is suggested by nonparametric 
analysis, Lande-Arnold-style gra- 
dient analyses can be justifiably 

implemented. One of the greatest advantages of the gradi- 
ent approach is that the measures of selection obtained are 
variables in the multivariate equations describing evolu- 
tionary change, allowing researchers to make explicit and 
quantitative predictions about the effect of selection. Dif- 
ferentials and gradients also provide quantification of par- 
ticular modes of selection that may be used in comparisons. 
Numerical values of gradients are not easily interpreted, 
however, because they describe subtleties of curvature, not 
peaks and valleys (Pigs 1,2). Graphical representation is rec- 
ommended to reveal the precise form of seIection6Js. Spline 
and quadratic surfaces visually describe different subsets of 
selection (total and direct, respectively) and therefore are 
not redundant. Path analysis represents an even more in- 
depth dissection of linear causal relationships among traits 
and fitness, and can be used to test specific a priori func- 
tional hypotheseszz. 

The techniques we have described are general, and 
represent a powerful set of tools to apply to problems of 
interest. Some basic questions about natural selection in 
the wild1 are ideally addressed through the implementation 
of visualization and quantification approaches. Selection is 
unlikely to be constant on either temporal or spatial scales, 
and the techniques described herein allow for both qualita- 
tive and quantitative assessments of variability in selection. 
The ability to partition selection into separate components 
also enables researchers to examine the ubiquity of particu- 
lar modes of selection (e.g. linear versus nonlinear, direc- 
tional versus stabilizing) operating in nature. It is also likely 
that theoretical and practical advances will be made in the 
analytical techniques themselves that will improve our han- 
dling and understanding of real-world data. Generalized lin- 
ear models (e.g. logistic regression) are more appropriate 
for some data sets than linear regressionll, but the co 
efficients from such models are not yet interpretable in the 
context of equations for evolutionary change. Nonparamet- 
ric approaches have proven invaluable in both description 
of selection (e.g. splines) and significance testing (e.g. boot- 
strap and jackknife tests), but to date only a few possible 
techniques29 have been investigated. 
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Despite the elegance of multivariate visualizations of se- 
lection, it is crucial to remember that surfaces and param- 
eters only describe selection. In fact, only the relationship 
between phenotype and fitness is described. It is important 
to realize specific traits may covary with fitness as a result 
of non-causal phenomena such as environmental covari- 
ances3OJ and inbreeding. The exploration of what causes 
natural selection-the forces, agents, biotic and abiotic inter- 
actions that result in a relationship between phenotypes 
and fitness-is another issue. Mechanisms of selection some 
times may be inferred from descriptive studies, but only 
experimental studies can reveal the hows and whys driving 
natural selectionl-3JjJs. Regression analysis and visualiza- 
tion of selection are powerful methods for generating test- 
able hypotheses about the causal agents of selection. 
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